

Batterielose Taschenlampe: elektromagnetische Induktion

Am Modell einer batterielosen Taschenlampe wird die elektromagnetische Induktion demonstriert.

Klassenstufe	Oberthemen	Unterthemen	Anforderungs- niveau	Durchführungs- niveau	Vorlauf Vorbereitung Durchführung
SI, SII	Elektrik	Elektromagnetische Induktion	••	•	- ca. 10 min. ca. 15 min.

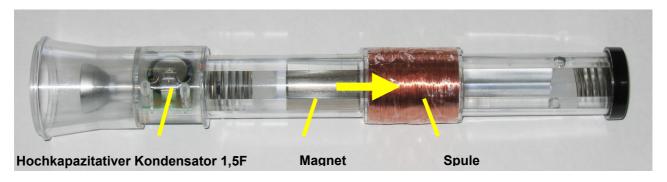
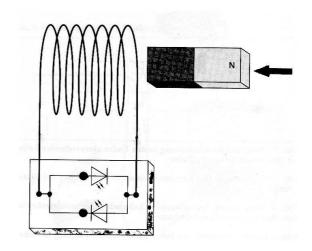


Abb. 1: Aufbau der Lampe, Bestell Nr. der kompletten Lampe 108.0750

- Einfacher Aufbau
- Die für die Induktion relevanten Teile sind recht groß und problemlos ohne Öffnen der Lampe zu erkennen
- Das sich ändernde Magnetfeld wird durch einen Permanentmagneten erzeugt nicht durch eine Spule
- einfacher Nachbau auch in Schülerübungen



Batterielose Taschenlampe

Experiment 1: Nachbau der Lampe

Materialien

_	Dormonontme	anot	200.3711	oder
•	Permanentma	agnei		ouei
			200.3717	
•	Leuchtdiode	rot	201.0267	
		grün	201.0260	
•	Grundplatte		201.0338	
•	Alternativ:			
	Elektronikbau	teile aus	100.8101	
	Schülerübung	ıssatz		
•	Kabelmateria			

.... und so könnte Ihre Unterrichtsstunde verlaufen

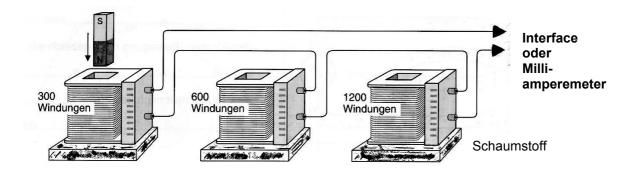
Phase	Inhalt	Methode	Medien
Einstieg	Batterielose Taschenlampe Wie funktioniert sie? Was muss / sollte man bei der Konstruktion einer solchen Taschenlampe beachten?	UG	Taschenlampe
Erarbeitung 1 und Sicherung	Modellexperiment: • Nachbau der Taschenlampe	Sch-Exp.	Freihand- Schülerexp.
(Hypothesenbildung)	 Wovon hängen Betrag und Vorzeichen der induzierten Spannung ab? 	LSG	Tafel Kopie
Erarbeitung 2	Wie muss ein quantitatives Experiment aufgebaut sein, um die Abhängigkeit von der Windungszahl zu untersuchen?	UG	
Messungen	Quantitatives Experiment: Induktionsspannung in Abhängigkeit von der Windungszahl	SD-Exp.	Demo-Exp. Folie / AB evtl. PC + Beamer
Erarbeitung 3 und Sicherung	Auswertung der Ergebnisse	UG	Folie / AB
Vertiefung	optional: Planung von weiteren Experimenten zur Untersuchung anderer Abhängigkeiten	UG	

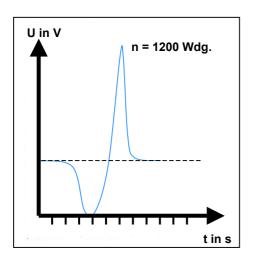
Batterielose Taschenlampe

Der Einstieg erfolgt durch die Demonstration der Taschenlampe. Sie leuchtet zunächst nicht – vorher natürlich entladen lassen. Durch das Schütteln fängt sie sofort an zu leuchten. Dieser im ersten Moment verblüffende Effekt / Impuls sollte die Schüler motivieren sich näher mit der Funktionsweise der Taschenlampe zu beschäftigen. Ein Unterrichtsgespräch stellt die Aktionsform in dieser Phase dar, da so eine möglichst offene Diskussion mit der Beteiligung vieler Schüler möglich ist.

Die Vermutungen zu den Abhängigkeiten der induzierten Spannung sollen mithilfe von Schülerexperimenten geschehen. Dies ist auch problemlos möglich, da nur die in der Materialliste angegebenen Teile benötigt werden. Durch das Schülerexperiment werden alle Schüler aktiviert und alle haben die Möglichkeit die Abhängigkeiten zu erfahren. Damit findet auch ein Wechsel der Methode statt (→ Verringerung des Anteils der frontalen Phasen des Unterrichts).

Das Schülerexperiment sollte offen angelegt sein: Kein Arbeits- oder Aufgabenblatt, anhand dessen bestimmt Abhängigkeiten untersucht werden sollen. Die Schüler sollten selbst anhand der gegebenen Mittel entscheiden, was und wie sie es untersuchen. Ein in Ansätzen forschender Unterricht lässt sich so realisieren.


Die Planung der weiteren Experimente sollte nun im Unterrichtsgespräch stattfinden. So haben viele Schüler die Möglichkeit sich an der Planung zu beteiligen.


Die Durchführung des Experimentes (*siehe Exp. 2*) kann durch den Einsatz des PC mit Interface und angeschlossenem Beamer sicher aufwändig gestaltet werden; hat man diese Messsysteme nicht zur Verfügung, genügt ein einfaches Milli-Amperemeter (10mA).

Batterielose Taschenlampe

Experiment 2: quantitativ

Lässt man den Magneten jeweils frei durch die Spulen fallen, kann man gleich ein weiteres Ergebnis diskutieren: Wieso besitzt der zweite Ausschlag entgegengestztes Vorzeichen und ist höher als der erste?

... und so könnte das Tafelbild aussehen

Elektromagnetische Induktion

Wird ein Magnet durch eine Spule bewegt (d.h. das Magnetfeld in der Spule ändert sich), so wird an der Spule eine Spannung <u>induziert</u> (erzeugt).

Bsp.: Batterielose Taschenlampe

Vermutung:

Der Betrag der induzierten Spannung hängt ab von:

- der Windungszahl der Spule
- der Stärke des Magneten
- der Geschwindigkeit, mit der der Magnet bewegt wird.

Das Vorzeichen der Spannung hängt von der Ausrichtung des Magneten ab.

Ergänzende Literatur:

H.-J. Wilke: Einführende Experimente zur elektromagnetischen Induktion. In: Praxis der Naturwissenschaften – Physik in der Schule, 53 (2004), Heft 5, S. 2 – 7