

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

Gerätesatz Lehre von den Kräften

Einführung

Dieser Gerätesatz enthält die Teile, welche zum Aufbau von Versuchsanordnungen und zur Demonstration der wichtigsten Lehrsätze aus dem Gebiet der Statik der starren Körper benötigt werden.

Die Geräte mit Magnethaltern besitzen kräftige Dauermagnete, mit denen sie beim Aufsetzen auf eine Metalltafel sicher haften.

Als Tafeln können beliebige Stahlbleche mit einer Dicke von 1 mm und mehr verwendet werden. Wir empfehlen jedoch unsere in der Praxis erprobten, emaillierten Stahltafeln 101871 oder 101872, die unempfindlich gegen Verkratzen sind, oder die weiß lackierte Stahlblechtafel 202257.

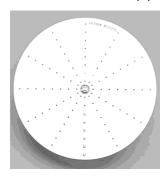
Der Plastikkoffer, in dem sich das Versuchszubehör befindet, kann horizontal oder vertikal am Experimentiertisch oder im Laborschrank aufgestellt werden.

Liste der Einzelteile mit Beschreibung

(in Klammern die im Gerätesatz enthaltene Stückzahl)

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

Haken mit Magnethalter (4), 2002252


kräftiger Rundmagnet mit einer Kontaktfläche von 40 mm Durchmesser, rostfreie Ausführung. Haken ist am Magnethalter festgeschraubt. Satz bestehend aus 4 Haken.

Satz 6 Filzstifte (1), 2008026

Satz mit 4 abwischbaren, farbigen Filzstiften. Sie ermöglichen das Beschriften einer lackierten Metalltafel, um z.B. Messwerte während eines Versuches zu erfassen. Die Stifte werden in einer Plastikhülle geliefert.

Momentenscheibe (1), 2002255

Plastikscheibe auf Magnethalter, 175 mm Durchmesser, kugelgelagert, mit 12 Lochreihen im Abstand von je 30 Grad. Die Löcher jeder Lochreihe sind in regelmäßigen Abständen von 10 mm angeordnet.

Mit dem Magnet kann die Lochscheibe beliebig auf der Metalltafel positioniert werden.

Kraftmesser

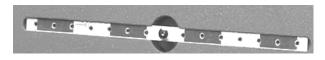
Federkraftmesser 10N (3), graduiert, 2002089 Federkraftmesser 5N (1), ungraduiert, 2002097

Quadratischer Meßkörper aus durchsichtigem Plastik. Graduierung durch regelmäßig abwechselnde schwarze und weiße Abschnitte. Ein Sicherheitsstopfen verhindert die Überdehnung der Feder und schützt zugleich den Haken vor Zug. Nullpunktkorrektur ist durch Drehen des Befestigungshakens möglich.

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

Kraftmesser mit runder Skala 5N (1), 2002095

Scheibe auf Magnethalter, 175 mm Durchmesser, mit kugelgelagerter Umlenkrolle. Anzeige unabhängig von der Angriffsrichtung der Kraft. Nullpunkteinstellung durch Lösen einer Stellschraube sehr einfach möglich. Erneute Eichung der Feder möglich.


Im Gerätesatz 2002273CD sind zusätzlich 2 Kraftmesser mit runder Skala 2N 2002094 enthalten.

Rolle Schnur (1), 2002259

Rolle Schnur a 50 m, 20-30 cm lange Stücke werden in den Versuchen benötigt. Einzeln lieferbar unter der Best.-Nr. 2002259.

Lochstab mit Magnethalter (1), 2002253

Länge 370 mm, 15 Löcher mit 4 mm Durchmesser in Abständen von 25 mm. Einteilung in abwechselnd rote und graue Abschnitte a 15 mm. Eine Rändelschraube ermöglicht das Ändern des Rotationspunktes des Stabes. Einzeln lieferbar unter der Best.-Nr. 2002253.

Lose Rolle (1), 2002063

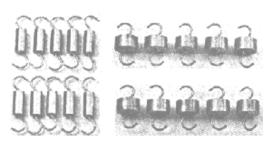
Rolle, 40 mm Durchmesser, mit Bügel und Haken. Einzeln lieferbar unter der Best.-Nr. 2002063

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

Rolle mit Magnethalter (4), 2002251

Rolle, 50 mm Durchmesser, kugelgelagert, mit Magnethalterung. Satz mit 4 Rollen, um zahlreiche Versuche durchzuführen. Einzeln lieferbar unter der Best.-Nr. 2002251

Wellrad mit Magnethalter (1), 2002254


Wellrad mit 3 Führungen (60/40/20 mm Durchmesser), fest auf einer Achse, mit Magnethalter. Jede Führung ist mit einem Loch versehen, um eine Schnur zu befestigen. Einzeln lieferbar unter der Best.-Nr. 2002254.

Maßstab (1), 2002260

30 cm langer Maßstab, magnethaftend. Einzeln lieferbar unter der Best.-Nr 2002260.

Satz Gewichte (20), 2002030

Satz 20 Gewichte aus Messing mit Haken auf beiden Seiten. Je 10 Gewichte zu 25 g und 50 g. Möglichkeit des Aneinanderreihens.

Einzeln lieferbar unter der Best.-Nr. 2002030.

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

Satz 10 Befestigungsringe (1), 2002258

Damit kann ein Stück Schnur z. B. an einem Haken o. ä. befestigt werden.

Benötigtes Zubehör:

- Metalltafeln (nicht im Lieferumfang enthalten) Metalltafel 600 x 400 mm, weiß lackiert, mit Fuß für senkrechte Anordnung, 2002257 Metalltafel 900 x 600 mm, grün emailliert, kratzfest, mit Kreide beschreibbar, mit Tischstativ, 1001871 Metalltafel 1200 x 900 mm, grün emailliert, kratzfest, mit Kreide beschreibbar, mit Tischstativ, 1001872
- Satz 10 Befestigungsringe (1), 2002258 (nicht im Lieferumfang enthalten)
- Bleidraht, 2000058

Versuche

Gleichgewicht von 2 Kräften mit gleichem Angriffspunkt

Empfohlenes	Zubehör:

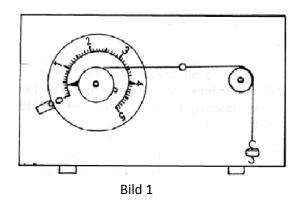
1 Metalltafel 400 x 600 cm	2000257
1 Befestigungsring	2002258
2 Schnüre	2002259
1 Satz Massen	2002030
1 Kraftmesser mit runder Skala	2002095
1 Rolle mir Magnethalter	2000251
1 Haken mit Magnethalter	2002252

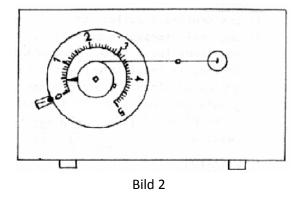
Theorie

Wirkt ein Körper A auf einen Körper B mit der Kraft F_1 , so wirkt der Körper B auf den Körper A mit einer Kraft F_2 , die den gleichen Betrag, jedoch die entgegengesetzte Richtung wie F_2 hat. (Prinzip von actio und reactio)

Schlussfolgerung

Zwei gleich große, entgegengesetzte Kräfte befinden sich im Gleichgewicht.

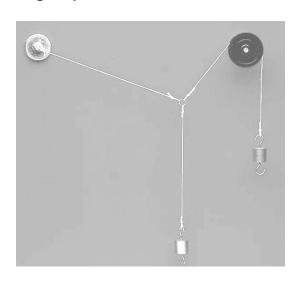


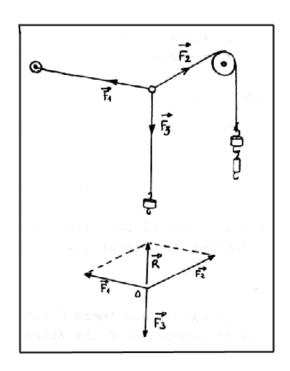

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

Experimenteller Nachweis

A) Zwei gleich große, entgegengesetzte Kräfte sind im Gleichgewicht.

Aufbau nach Bild 1 und Überprüfen der Schlussfolgerung.





B) Reaktion

Aufbau nach Bild 2.

Gleichgewicht von 3 Kräften mit gleichem Angriffspunkt

Versuchsziel

Untersuchung von 3 zusammenwirkenden Kräften

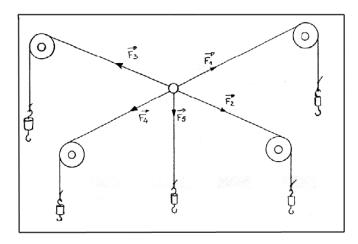
Empfohlenes Zubehör

1 Metalltafel	2002257
3 Haken mit Magnethalter	2002252
3 Federkraftmesser	2002089
1 Satz Befestigungsringe	2002258

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

1 Filzstift 2008026

Theorie


- 1. Die Vektoren der 3 Kräfte befinden sich in der gleichen Ebene.
- 2. Gemeinsamer Angriffspunkt aller Kräfte in O.
- 3. Aufzeichnen der 3 zusammenwirkenden Kräfte
- 4. Die Resultierende R der Kräfte F_1 und F_2 ergibt sich durch Zeichnen des Kräfteparallelogramms, welches F_1 und F_2 als angrenzende Seiten besitzt. Man stellt fest, daß die Diagonale R im Punkt O dieses Parallelogramms den gleichen Betrag wie die Kraft F_3 besitzt, ihr jedoch entgegengerichtet ist.
- 5. Wenn man F_1 und F_2 durch R ersetzt, bleibt das Kräftegleichgewicht erhalten.
- 6. Daraus folgt : $R = F_1 + F_2 = F_3$

Anwendung

Der Versuch wird mit den oben angegebenen Teilen durchgeführt. Mit Filzstift bzw. Kreide werden Betrag und Richtung der 3 Kräfte auf die Metalltafel gezeichnet. Anschließend prüft man nach, ob man durch Ersetzen von F_1 und F_2 durch F_3 erhält.

Zusammenwirkende Kräfte

Gleichgewicht mehrerer beliebiger Kräfte, welche in der gleichen Ebene liegen und den gleichen Angriffspunkt besitzen.

Empfohlenes Zubehör

1 Metalltafel	2002331	1 Satz Filzstifte	2008026
4 Rollen mit Magnethalter	2002251	1 Satz Befestigungsringe	2002258
1 Satz Massen mit Haken	2002038	1 kartoniertes Blatt	

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

Versuch

Bauen Sie die oben gegebene Versuchsanordnung auf und zeichnen Sie die Richtung der verschiedenen Kräfte auf das Blatt ein. Geben Sie den Betrag jeder einzelnen Kraft an. Das Beschriften ist auch direkt auf der Metalltafel möglich.

Wenden Sie Schritt für Schritt die Vektoraddition auf das Kräfteparallelogramm an.

Man erhält:

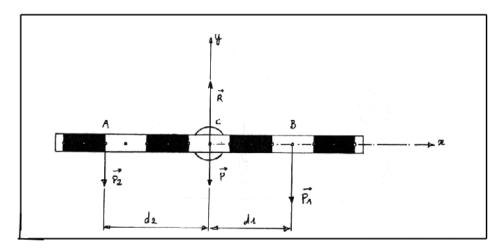
Vektor $R_1 = F_1 + F_2$ ist die Resultierende, die die beiden Kräfte F_1 und F_2 ersetzt.

Vektor $R_2 = R_1 + F_3$ ersetzt die 3 Kräfte F_1 , F_2 und F_3

Vektor $R_{\!\scriptscriptstyle 3}=R_{\!\scriptscriptstyle 2}+F_{\!\scriptscriptstyle 4}$ ersetzt die 4 Kräfte $F_{\!\scriptscriptstyle 1}$, $F_{\!\scriptscriptstyle 2}$, $F_{\!\scriptscriptstyle 3}$, $F_{\!\scriptscriptstyle 4}$.

Der Vektor R_3 hat den gleichen Betrag wie F5 , jedoch die entgegengesetzte Richtung. Wenn man demnach die 4 Kräfte F_1 , F_2 , F_3 und F_4 durch einen einzigen Kraftvektor R_3 ersetzt, bleibt das bestehende Gleichgewicht unverändert.

Hebelberechnungen


Ziel des Versuchs: Nachweis des Hebelgesetzes

Empfohlenes Zubehör

 1 Metalltafel
 2002257

 1 Lochstab
 2002253

 1 Satz Gewichte
 2002030

Theorie

Gegeben ist ein beweglicher Stab mit mehreren Löchern in regelmäßigen Abständen auf der gesamten Stablänge. Er ist um eine Achse symmetrisch zum Zentrum angeordnet. Links und rechts vom Zentrum wird jeweils eine Masse befestigt.

Wirkende Kräfte am Hebel:

Wirkende Kräfte: P = Gewicht des Lochstabes

P1, P2 = Einzelgewichte

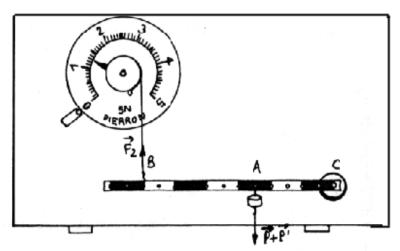
Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

Gegenkraft: R = Reaktion des Auflagers C

Man hat ein System im Gleichgewicht, für das gilt: $P+P_1+P_2+-R=0$

Durch vertikale Projektion erhält man: $P+P_1+P_2-R=0$

oder $R = P + P_1 + P_2$


Man summiert die Momente auf jeder Seite der Achse $0 = P_1 \cdot d_1 - P_2 \cdot d_2 + P \cdot 0$

$$P_1 = \frac{P_2 \cdot d_2}{d_1}$$

Praxis

Man überprüfe diese Formel durch den Aufbau der oben gegebenen Versuchsanordnung. (Läßt sich der Lochstab nicht frei bewegen, so kann man dies durch Lockerung der Rändelschraube erreichen).

Hebel im Gleichgewicht, parallele Kräfte, Momente

Empfohlenes Zubehör

1 Metalltafel	2002257
1 Kraftmesser mit runder Skala	2002095
1 Satz Gewichte	2002030
1 Lochstab mit Magnethalter	2002253

Versuch

Bringen Sie den Kraftmesser und den Lochstab auf der Metalltafel - wie oben angegeben - an. Die Schnur des Kraftmessers sollte senkrecht auf den Hebel zeigen. Hängen Sie eine Masse P an den Lochstab, und richten Sie ihn horizontal aus.

Dann mißt man die Abstände CA, CB und wendet die Momentenformel an, so daß

$$CA \cdot (P + P) = CB \cdot F_2$$
 (Ablesen auf Kraftmesser)

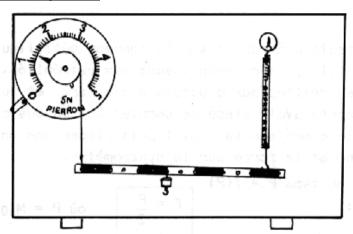
Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

Beispiel: CA = 12,5 cm

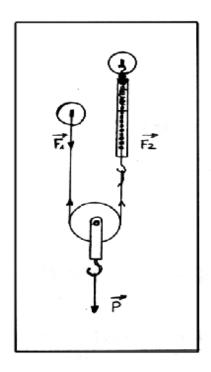
CB = 25 cm

F2 = 0.85 N

Anwendung der Formel


 $\frac{12,5}{25}(P+P') = \frac{P+P}{2} = F_2$

Damit ergibt sich bei


$$P = 100g \cdot 9,81undP + P = 0,83N - F_2 = 0,85N$$

$$P = 70g \cdot 9,81$$

Eine weitere Versuchsmöglichkeit

Gleichgewicht einer Kraft über eine lose Rolle

zwei entgegengesetzte Kräfte sind im Gleichgewicht.

$$F_2 = \frac{P}{2} = F_1$$

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

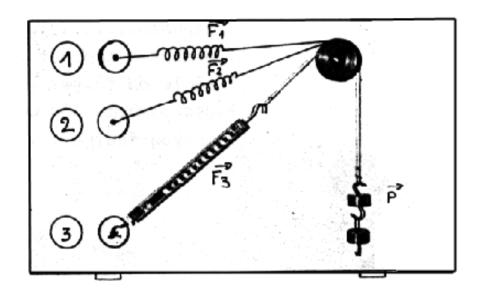
<u>Ziel</u>

Man zeige, daß die beiden Kräfte an der losen Rolle gleich sind und ihr Betrag jeweils der Hälfte der Kraft entspricht, die von der angehängten Masse auf die Rolle ausgeübt wird.

Empfohlenes Zubehör

1 Metalltafel 700 x 700 cm	2002331	1 lose Rolle	2002063
1 Federkraftmesser 10 N	2002089	2 Haken mit Magnethalte	2002252
1 Satz Gewichte	2002030	1 Rolle Schnur	2002259

Versuch


- Anbringen von 2 Haken mit Magnethalter an der Metalltafel, wie abgebildet
- > 0,5 m Schnur abschneiden und an beiden Enden eine Schlaufe machen
- > Befestigen des Federkraftmessers an einem der beiden Haken
- Ein Ende der Schnur wird mit dem Federkraftmesser, das andere Ende mit dem freien Haken verbunden
- Rolle wie abgebildet anbringen
- beliebiges Gewicht an den Haken der losen Rolle hängen und den
- Ausschlag am Federkraftmesser ablesen
- Anlegen einer Wertetabelle für F = f(P)

$$F = \frac{P}{2} oder P = M \cdot g$$

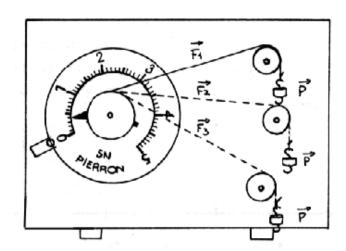
Man stellt fest:

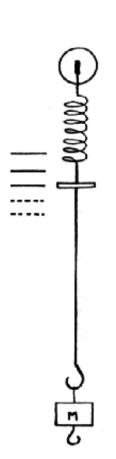
Gleichgewicht einer Kraft über die feste Rolle

oder Darstellung einer Kraft mit vorgegebener Richtung

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

Empfohlenes Zubehör


1 Metalltafel	2002257	1 lose Rolle	2002063
1 Federkraftmesser 10 N	2002089	1 Haken mit Magnethalter	2002252
(oder Kraftmesser mit runder Skala)		1 Rolle Schnur	2002259
1 Rolle mit Magnethalter	2002251	1 Satz Gewichte	2002030


Man plaziert den Haken mit Magnethalter sowie die Rolle auf der Metalltafel wie in der Abbildung unter 1, 2 und 3 dargestellt.

Man notiert die entsprechenden Kräfte F_1 , F_2 und F_3 bei einer konstanten Last P.

Man kann ebenfalls den Federkraftmesser fest anordnen und die Lage der Rolle verändern. Das Ergebnis bleibt das gleiche (Abb. 2).

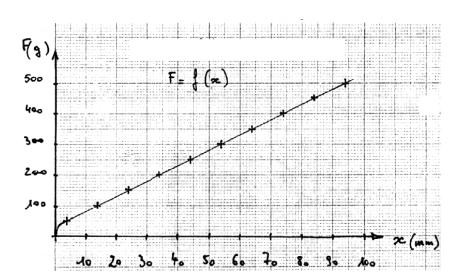
Dieses System erlaubt uns, eine Kraft durch Veränderung ihrer Richtung zu übertragen, wobei ihr Betrag erhalten bleibt.

Eichen einer Feder

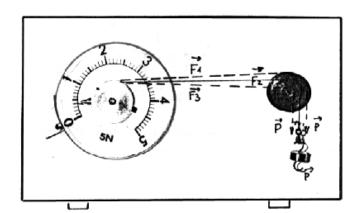
<u>Em</u>	<u>ptoh</u>	lenes 2	<u> Zube</u>	<u>nor</u>

1	Metalltafel	2002257
1	Haken mit Magnethalter	2002252
1	Satz Gewichte	2002030
1	Federkraftmesser (5 N, ungrad.)	2002097
1	Filzstift	2008026

Versuch


Befestigung eines Hakens mit Magnethalter auf der Metalltafel. Der ungraduierte Federkraftmesser wird am Haken befestigt. Anschließend werden verschiedene Massen an den Kraftmesser gehängt. Auf der Metalltafel notiert man mit dem Filzstift die verschiedenen Positionen der Markierungshilfe am Kraftmesser bei den einzelnen Messungen, wie oben angegeben.

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273


Dieses Experiment lässt sich mit einer beliebigen Feder oder mit einem geeichten Federkraftmesser durchführen. Man überprüft außerdem, ob die Auslenkung einer Spiralfeder proportional zu der an ihr angreifenden Kraft ist.

Man trägt die Kurve F = f(x), x = mm und F = M g

Differenzialrolle im Gleichgewicht

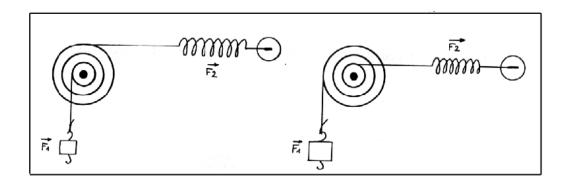
(Darstellung einer Kraft mit vorgegebener Richtung und Betrag)

Empfohlenes Zubehör

1 Metalltafel	2002257
1 Satz Gewichte	2002030
1 Wellrad mit Magnethalter	2002254
1 Rolle Schnur	2002259
1 Kraftmesser mit runder Skala	2002095

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

Versuch


Befestigen von Kraftmesser und Wellrad auf der Metalltafel, so daß beide Zentren auf der gleichen horizontalen Achse liegen.

An die Schnur des Kraftmessers wird eine beliebige Masse gehängt.

Anschließend wird die Schnur in die verschiedenen Führungen des Wellrades gelegt. Der Ausschlag des Kraftmessers wird jeweils notiert.

Man stellt fest: $F_1 \approx F_2 \approx F_3 \approx P$

Gleichgewicht eines Wellrades

Ziel

Zeigen Sie mit Hilfe eines Wellrades, daß die benötigte Kraft, um eine Last anzuheben, geringer als diese Last sein kann.

Empfohlenes Zubehör

1 Metalltafel 600 x 400	2002257	1 Satz Gewichte	2002030
1 Wellrad mit Magnethalter	2002254	1 Rolle Schnur	2002259
1 Federkraftmesser	2002095 00	ler 2002089	

Versuche

I. Aufbau der Versuchsanordnung nach Abb.1 und anschließendes

Anwenden der Formel: $F_2 \div F_2 = r \div R$

Beispiel A:
$$r = 10$$
 $F_1 = 0.2 \times 9.81 = 1.96 \,\text{N}$ $F_2 = 1.96 \times \frac{10}{30} = 0.65 \,\text{N}$ $R = 30$ $F_3 = 0.6 \,\text{N}$ abgelesen

Beispiel B:
$$r = 10$$
 $F_1 = 0.3 \cdot 9.81 = 2.94 \text{ N}$ $F_2 = 2.94 \cdot \frac{10}{30} = 0.98 \text{ N}$ $F_2 = 1.0 \text{ N}$ abgelesen

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

Man stellt fest, daß der abgelesene Wert von F2 sehr gut mit dem berechneten Wert übereinstimmt.

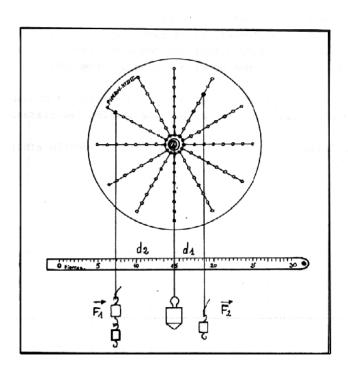
II. Aufbau der Versuchsanordnung nach Abb.2 und nochmalige Anwendung der oben angegebenen Formel.

Beispiel A
$$r = 30$$
 $F_1 = 0, 1.9, 81 = 0,98$ N

$$r = 30$$
 $F_1 = 0, 1.9, 81 = 0.98$ N $F_2 = 0.98 \cdot \frac{10}{30} = 2.94$ N

$$R = 10 F_2 = 3 \text{ N}$$
 abgelesen

$$r = 30$$
 $F_1 = 0,05 \cdot 9,81 = 0,49$ N


$$r = 30$$
 $F_1 = 0.05 \cdot 9.81 = 0.49$ N $F_2 = 0.49 \cdot \frac{10}{30} = 1.47$ N

$$R = 10 F_2 = 1,5 \text{ N}$$
 abgelesen

Schlussfolgerung

Eine Last übt eine Kraft F_i aus. Mit Hilfe eines Wellrades ist es möglich, mit einer geringeren Kraft F_2 anzuheben, wenn der Durchmesser der Rolle, an der die Last hängt, geringer ist als der Durchmesser der Rolle, über die die Last gehoben wird.

Bestätigung des Momentensatzes

Theorie

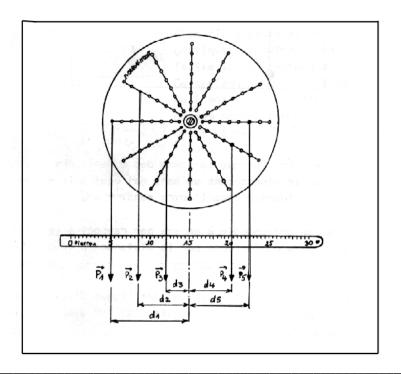
Ein beweglicher Körper auf einer Achse befindet sich im Gleichgewicht, wenn die Summe der linksdrehenden Momente gleich der Summe der rechtsdrehenden Momente ist. Wenn man 2 Kräfte F1 und F2 betrachtet, so kann man bestätigen, daß $M_1 = M_2$, wenn sich der Körper im Gleichgewicht befindet.

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

Es gilt auch: $F_1 \cdot d_1 = F_2 \cdot d_2$

Empfohlenes Zubehör

1 Metalltafel	2002257	1 Satz Massen	2002030
1 Momentenscheibe	2002255	1 Rolle Schnur	2002259
1 Senklot	2000058	1 Maßstab, magnetisch	2002260

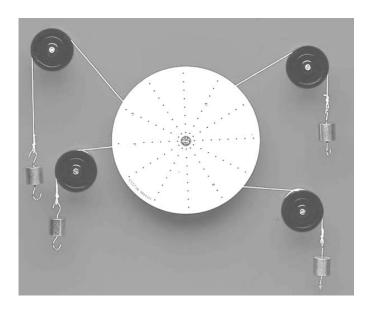

Versuch

Anbringen der Momentenscheibe auf der Metalltafel. Den Maßstab horizontal derart ausrichten, dass das Senklot genau auf der 15 cm-Markierung liegt. Entfernen der Stifte aus den Löchern der Scheibe. Vorbereiten der Schnüre mit Schlaufen an den Enden. Befestigen Sie links und rechts der Achse der Scheibe je einen Stift. An den Stiften wird jeweils ein Stück Schnur und eine Masse gehängt. Man liest dann die Abstände d1 und d2 ab. Man trägt die Messergebnisse in die Tabelle ein und überprüft somit den Momentensatz.

F1	25	50	25	50	50
F2	25	25	50	25	50
d1	4,5	4	7	3	5
d2	4,5	8	3,5	6	5
$M_1 = F_1 \cdot d_1$	112,50	200	175	150	250
$M_2 = F_2 \cdot d_2$	112,50	200	175	150	250

Verallgemeinerung des Momentensatzes

$$P_1 \cdot d_1 + P_2 \cdot d_2 + P_3 \cdot d_3 = P_4 \cdot d_4 + P_5 \cdot d_5$$

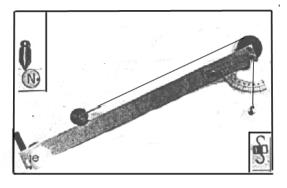

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

Aufbau der links unten stehenden Versuchsanordnung.

Anschließend mißt man die Hebelarme d1 bis d5. Setzen Sie die Werte in die obige Gleichung ein, das Ergebnis wird bestätigt.

Man kann dieses Experiment mit anderen Hebelarmen wiederholen, um nochmals den Satz zu überprüfen.

Zweite Möglichkeit


Der Körper befindet sich im Gleichgewicht, wenn die Summe der linksdrehenden Momente gleich der Summe der rechtsdrehenden Momente ist.

Das Moment einer Kraft entspricht dem Produkt ihres Betrages und des Abstandes 'd', den die Wirkungslinie der Kraft vom Drehpunkt hat.

Man versuche möglichst die Vektoren so auf der Achse zu verteilen, dass man die Abstände d mit dem Sinus von 30 Grad berechnen kann.

Ansonsten muss man sie durch Abmessen bestimmen.

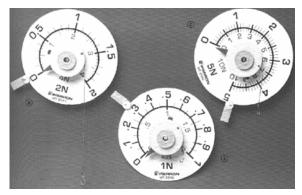
Ergänzende Geräte

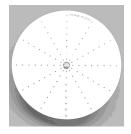
(nicht im Lieferumfang der Gerätesätze 2002273 und 2002273CD enthalten)

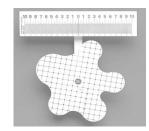
Metalltafeln sind auf Seite 4 dieser Anleitung beschrieben.

Kraftmesser mit runder Skala 1 N, 2002093 Wie Kraftmesser 2002094 (2 N) + 2002095 (5N)

Federkraftmesser 2002476 (2 N)


Federkraftmesser 2002096 (2 N, ungraduiert)


Federkraftmesser 2002090 (5 N, graduiert)


Federkraftmesser 2002092 (50 N)

Gerätesatz Lehre von den Kräften - Best.-Nr. 2002273

Schiefe Ebene für Metalltafel 2002047

Ein zylindrischer Rollkörper (Masse 120 g) ist auf einer 400 mm langen Aluminiumschiene beweglich angeordnet. Am einen Ende der Schiene sind eine kugelgelagerte Umlenkrolle, ein Winkelmesser und ein Senklot angebracht. Die schiefe Ebene haftet mit zwei Magnethaltern an jeder Metalltafel. Durch Verschieben der Magnethalter läßt sich die Neigung der Ebene leicht ändern. Es ist möglich, Massen mit Haken oder Kraftmesser mit runder Skala (1 N, 2002093) zu verwenden; diese müssen mit Magnethaltern ausgestattet sein.

Unregelmäßig geformte Scheibe 2002256

Kugelgelagerte, unregelmäßig geformte Scheibe mit 2 cm-Bohrungen in Abständen von 10 mm über der gesamten Oberfläche. Lagerung erfolgt im Schwerpunkt. Ein Abstand-Meßsystem ermöglicht eine schnelle Ermittlung der Momente. Diese Momentenscheibe ist mit einem Magneten ausgestattet, so dass es möglich ist, sie auf jeder Metalltafel anzubringen.

Wenn Sie Änderungs- und/oder Verbesserungsvorschläge haben, teilen Sie es uns bitte mit.