

BAD M 03803 Widerstandsdrähte auf Rahmen

Widerstandsdrähte auf Rahmen

Best.-Nr. MD03803

Beschreibung des Gerätes

Auf einem rechteckigen Rahmen (1030 x 200 mm) sind 7 Widerstandsdrähte gespannt:

Draht 1:	Neusilber	Ø 0,5 mm,	Länge 50 cm,	lmax. =	2,5 A	0,7 Ω
	verlängert d	urch einen die	cken Messingdraht	Ø 2 mm vo	on ebenfal	lls 50 cm
	Länge, dess	en Widerstan	nd zu vernachlässig	jen ist.		

Draht 2:	Neusilber	Ø 0,3 mm	Länge 100 cm	lmax. =	1 A	5,6 Ω
Draht 3:	Neusilber	Ø 0,5 mm	Länge 100 cm	Imax. =	2,5 A	1,4 Ω
Draht 4:	Neusilber	Ø 0,5 mm	Länge 100 cm	lmax. =	2,5 A	1,4 Ω
Draht 5:	Messing	Ø 0,5 mm	Länge 100 cm	lmax. =	4,0 A	0,2 Ω
Draht 6:	Stahl	Ø 0,5 mm	Länge 100 cm	lmax. =	2,5 A	1,0 Ω
Draht 7:	FeNi	Ø 0,5 mm	Länge 100 cm	lmax. =	2,0 A	1,7 Ω

Die 7 Widerstandsdrähte sind einzeln in einem Rahmen aufgehängt.

Sie besitzen bis auf den ersten Draht (50 cm) alle die gleiche Länge von 100 cm und sind mit einem Ende fest auf der Aluminiumplatte P verschraubt. Dort besteht gleiches Potential (Masse). Mit einer kurzen Steckverbindung kann dieses Nullpotential auf die Schaltplatte B (nicht im Lieferumfang) gelegt werden. Das Potential vom anderen Ende des zu messenden Drahtes wird ebenfalls mit einer kurzen Steckverbindung auf die Leiste C gelegt. Man erhält dadurch eine sehr gut leitende Verbindung.

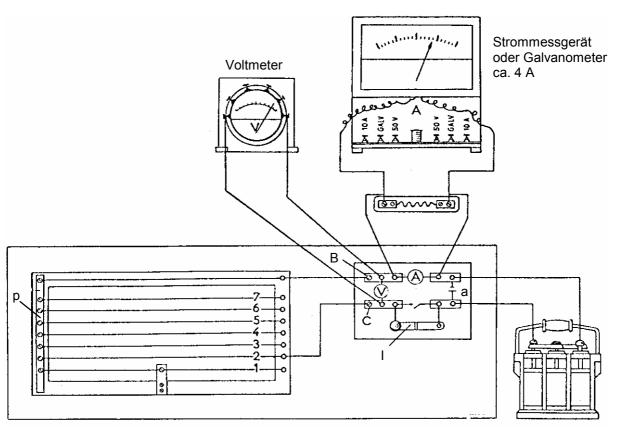
Die Schaltung auf der Schaltplatte sollte enthalten:

einen manuellen Unterbrecher (Schalter) I und verschiedene Anschlussbuchsen:

- für die Stromversorgung (6 V-Batterie oder Netzgerät 6 V, 4 A)
- für ein Voltmeter V
- für ein Amperemeter A

Mit möglichst kurzen Messleitungen wird die Messdrahtleiste mit der Schaltplatte verbunden.

BAD_ M_03803 Widerstandsdrähte auf Rahmen


Dieses Gerät ist für folgende Versuche geeignet:

Erstes Ohmsches Gesetz: Nachweis, dass das Verhältnis zwischen der Potentialdifferenz an den Enden eines drahtförmigen Leiters und der Stromstärke I, die diesen durchfließt, konstant ist.

$$V_{\text{A}} - V_{\text{B}} = R_{\text{I}} \text{ oder } R = \frac{U}{I}$$

Zweites Ohmsches Gesetz: Zusammenhang zwischen dem Widerstand eines homogenen Drahtes, seinen Abmessungen (Länge und Querschnittsfläche) und seines spezifischen Widerstandes.

Annähernd genaue Messung eines ersten und dann eines zweiten Widerstandes. Bestätigen der Gesetzmäßigkeiten für Reihenschaltungen von Widerständen R = R₁ + R₂ und Widerständen in Parallelschaltung: $\frac{1}{R} = \frac{1}{R'} + \frac{1}{R''}$

Batterie oder Netzgerät 6V, 4A

BAD_ M_03803 Widerstandsdrähte auf Rahmen

Versuche mit dem Gerät MD03803

Widerstandsmessung

$$R = \frac{U}{I}$$
 R (\Omega), U (V), I (A)

Man verwendet einen der Widerstandsdrähte und variiert die Versorgungsspannung U. Bei jedem Wert für U stellt sich ein entsprechender Wert für I ein. Zeichnen Sie die Graphik für verschiedene Werte für U.

Beispiel: Nehmen Sie den 2. Draht. Verwenden Sie 1, dann 2 oder 3 Elemente der Batterie (bis 6 V) oder entsprechende Spannungen aus einem Stromversorgungsgerät.

Spannung	U =		Volt
Stromstärke	=		Ampere
Berechneter Widerstand	U/I = R		Ω

Schlussfolgerung

Der Widerstand eines Leiters entspricht dem Quotienten aus angelegter Spannung und fließender Stromstärke.

Bestimmung der verschiedenen Faktoren, die den Widerstand des Leiters beeinflussen:

$$R = \rho \cdot \frac{L}{4}$$
 R (Ω), ρ (Ω /cm), L (cm), A (cm²)

Länge eines Leiters

Benutzen Sie die Drähte 1 und 3 (gleiches Material):

Neusilber mit einem Ø 0,05 cm und den Längen 50 bzw.100 cm.

Länge L	Draht 1 (50 cm)	Draht 2 (100 cm)	cm
Spannung U			Volt
Strom I			Ampere
Berechneter Widerstand U/I = R			Ω
Verhältnis R/L			

Schlussfolgerung

Der Widerstand eines Leiters ist proportional zu seiner Länge.

BAD M 03803 Widerstandsdrähte auf Rahmen

Querschnittsfläche eines Leiters

$$A = \frac{\pi D^2}{4}$$

A (cm²), D (cm)

Benutzen Sie die Drähte 2 und 3 (gleiches Material): Neusilber gleicher Länge (100 cm), Ø 0.03 bzw. 0.05 cm.

Durchmesser D	Draht 2 (Ø = 0,03)	Draht 3 (Ø = 0,05)	cm
Spannung U			V
Stromstärke I			Α
Berechneter Widerstand R=U/I			Ω
Berechnete Querschnittsfläche			cm ²
$A = \pi * D^2/4$			
Produkt R x A			

Schlussfolgerung

Der Widerstand eines Leiters ist der Länge L und dem Kehrwert seiner Querschnittsfläche A proportional.

(Andere Möglichkeit: Parallelschaltungen von 2 Drähten mit gleicher Querschnittsfläche, Material und Länge (3. und 4. Draht). Man verdoppelt damit die wirksame Querschnittsfläche für den Strom).

Spezifischer Widerstand eines Leiters

Benutzen Sie Drähte mit gleicher Länge (100 cm) und gleichem Durchmesser (Ø=0,05 cm): 3 oder 4 aus Neusilber, 5 aus Messing, 6 aus Stahl, 7 aus einer Eisen-Nickel-Verbindung.

Material	Neusilber-	Messing-	Stahl-	FeNi-	
	Draht 3 u. 4	Draht 5	Draht6	Draht7	
Spannung U					Volt
Strom I					Ampere
Berechneter Widerstand R = U/I					(Ω)
Spezifischer Widerstand					(Ω/cm)
$\rho = R * A / L$					

Schlussfolgerung

Der Widerstand eines Leiters variiert mit der verwendeten Metallart. Der spezifische Widerstand ρ = R * A / L charakterisiert das verwendete Metall:

BAD M 03803 Widerstandsdrähte auf Rahmen

Berechnung einer Parallelschaltung von 2 Widerständen

$$\frac{1}{R} = \frac{1}{R'} + \frac{1}{R''}$$

Verwenden Sie jeweils 2 Widerstände, die Sie parallel schalten

Beispiel: Draht 6 und 7, Draht und 3 und 6

Drähte parallel/Nr. des Widerstandes	6/R6 7/R7	6/R6 3/R3	
Spannung U			(Volt)
Strom I			(Ampere)
Berechneter Widerstand R=U/I			(Ω)
Berechneter Leitwert			Siemens
Summe der Einzelleitwerte	$\frac{1}{R_6} + \frac{1}{R_7} =$	$\frac{1}{R_6} + \frac{1}{R_3} =$	

Schlussfolgerung

Bei der Parallelschaltung von 2 Widerständen ist der Kehrwert des Gesamtwiderstandes gleich der Summe der Kehrwerte der Einzelwiderstände.

Schreibweise des Leitwertes: 1/R = G; Einheit Siemens oder $1/\Omega$

Bei der Parallelschaltung ist der Gesamtleitwert gleich der Summe der Einzelleitwerte.

Berechnung einer Reihenschaltung

R = R' + R''

Verbinden Sie 2 Widerstände mit Messleitungen zur Reihenschaltung.

Drähte in Reihe (Nr.)	1 und 5	3 und 4	6 und 7	
Widerstand	R1 und R5	R3 und R4	R6 und R7	
Spannung U				(Volt)
Strom I				(Ampere)
Gesamt-Widerstand U/I = R				(Ω)
Summe der Einzelwiderstände	R1 + R5	R3 + R4	R6 + R7	

Schlussfolgerung

Bei einer Reihenschaltung von Widerständen ist der Gesamtwiderstand gleich der Summe der Einzelwiderstände.

Wenn Sie Änderungs- und/oder Verbesserungsvorschläge haben, so können Sie uns diese gerne mitteilen.