Versuchsbeschreibung/Gebrauchsanleitung

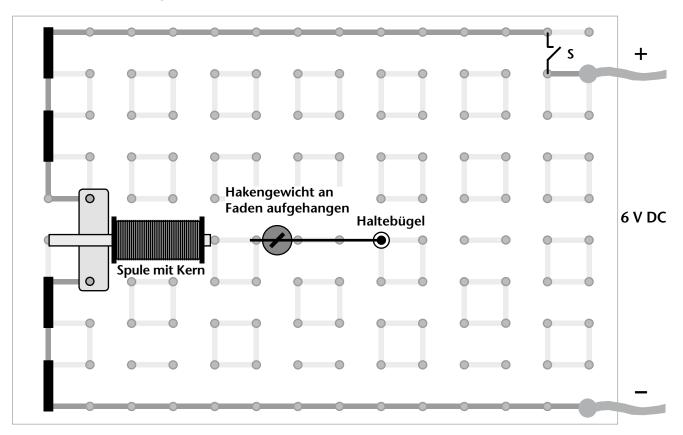
CorEx Schülerexperimentier-Gerätesatz (SEG)

Elektrik

u beziehen bei CONATEX-DIDACTIC Lehrmittel GmbH

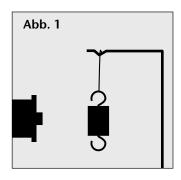
Schülerexperimentier-Gerätesatz (SEG)

Elektrik


Bestellnummer 23100

Inhal	t
-------	---

		C 16	Thermisch beeinflussbare
Einzelteilübersicht4, 5			Widerstände52
Kleinteilübersicht6		C 17	Brückenschaltung54
Einräumpläne7		C 18	Widerstandsmessung50
Hinwe	ise zur Versuchsdurchführung8, 9	C 19	Elektrische Leistung58
	hsbeschreibungen10–113	C 20	Elektrische Arbeit60
Teil A	Magnetismus		Elektrik – Wärmeenergie
A 1	Magnetische Wirkungen10	C 21	Umwandlung in Wärmeenergie 62
A 2	Magnetisches Feld11	C 22	Lichtwirkung6
A 3	Kraftwirkungen zwischen	C 23	Leitungs- und Widerstandsdraht64
	Magneten 12	C 24	Sicherung60
A 4	Magnetische Influenz13	C 25	Bimetall-Schalter6
A 5	Erdmagnetismus/Kompass14	C 26	Hitzdraht-Amperemeter68
Teil B	Elektrostatik		Elektrik – Elektromagnetismus
B 1	Reibungselektrizität15	C 27	Magnetfeld eines Leiters70
B 2	Kraftwirkung zwischen	C 28	Magnetfeld einer Spule72
	geladenen Körpern16	C 29	Elektromagnet7
B 3	Modell eines Elektroskops17	C 30	Relais74
B 4	Elektroskop18	C 31	Selbstunterbrecher
B 5	Polarisation/Influenz19	C 32	Lorentzkraft78
B 6	Influenz am Elektroskop20	C 33	Prinzip des Elektromotors80
B 7	Ladungsspeicher21	C 34	Elektromotor
B 8	Faradaybecher22		Zielke Gillocol
B 9	Kondensator23		Elektrik – Elektromagnetische Induktion
		C 35	Induktion84
Teil C	Elektrik – Grundlagen	C 36	Induktion bei Gleichspannung80
C 1	Elektrischer Stromkreis25	C 37	Selbstinduktion88
C 2	Leiter/Nichtleiter26	C 38	Generatorprinzip90
C 3	Stromleitung in Flüssigkeiten28	C 39	Wechselstromgenerator92
C 4	Elektrische Spannung30	C 40	Lenz'sche Regel94
C 5	Elektrische Stromstärke32	C 41	Wechselstrommotor90
C 6	Elektrischer Widerstand34	C 42	Transformator98
C 7	Ohm'sches Gesetz36	C 43	Wechselstromwiderstand e. Spule 102
C 8	Reihenschaltung von Glühlampen38	C 44	Wechselstromwiderstand
C 9	Reihenschaltung von		eines Kondensators104
	Widerständen40		
C 10	Parallelschaltung von Glühlampen42	Teil D	Elektrochemie
C 11	Parallelschaltung von	D 1	Elektrolyse100
	Widerständen44	D 2	Galvanisieren108
C 12	Vorwiderstand45	D 3	Elektrochemisches Element 110
C 13	Spannungsteiler46	D 4	Elektrochemische Potenziale 112
C 14	Spezifischer Widerstand48		
C 15	Widerstand und Temperatur50		
	•		•


Elektrik – Elektromagnetismus

C 29 Elektromagnet

Material

Brückenstecker, 4 x	1	Zusätzlich erforderlich:
Haltebügel	16	Steckplatte
Hebelschalter-Kontakt	46	Steckernetzteil, 6 V, DC
Hebelschalter-Arm	47	Faden
Spule mit Kern	49	
Hakengewicht 25 g	54	

Versuchsdurchführung

Die Bauelemente werden entsprechend der Abbildung in die Buchsen der Steckplatte eingesteckt. Das Hakengewicht wird so mit einem Faden am Haltebügel aufgehängt, dass es etwa in gleicher Höhe vor dem Kern der Spule hängt. Der Schalter S wird geöffnet. Danach wird das Netzteil polrichtig angeschlossen.

Der Schalter wird geschlossen und die Auswirkung auf das Hakengewicht beobachtet. Anschließend wird der Schalter wieder geöffnet und nach einer kleinen Pause abermals geschlossen und geöffnet. Die Auswirkungen werden beobachtet.

Fragen

- 1. Welche Auswirkungen kann man beim Öffnen und Schließen des Schalters beobachten?
- 2. Wodurch werden diese Vorgänge verursacht?
- 3. Wodurch unterscheidet sich ein Elektromagnet von einem Dauermagneten?