Leitfähigkeitssensor

PS-2116

Sensorspezifikationen

Sensorbereiche: 🔽 🛴	0–1000 μS/cm 0–10.000 μS/cm 0–100.000 μS/cm
Genauigkeit:	±10 % der Gesamtskala für alle Bereiche
Auflösung:	0,1 % oder besser
Max. Abtastrate:	20 Abtastwerte/Sekunde
Standardabtastrate:	2 Abtastwerte/Sekunde
Betriebstemperatur:	0–50 °C

Schnellstart für Leitfähigkeit

Der Leitfähigkeitssensor PS-2116 misst die Leitfähigkeit von lonen- und Nicht-lonenmolekülen wässeriger Lösungen.

Zusätzlich benötigte Komponenten

- PASPORT™ Messsystem (USB-Link, Xplorer, PowerLink usw.)
- EZscreen oder DataStudio[®] Software (Version 1.6 oder neuer)

Geräteeinstellungen

- 1. Schließen Sie die PASPORT Link-Vorrichtung an einen USB-Anschluss Ihres Computers oder an einen USB-Hub an.
- 2. Schließen Sie die Sonde des Leitfähigkeitssensors an das Sensorgehäuse an.
- 3. Schließen Sie den Sensor an eine PASPORT Link-Vorrichtung an.
- 4. Die Software startet, wenn sie einen PASPORT-Sensor erfasst. Wählen Sie im PASPORTAL-Bildschirm eine Zugangsweise aus.

800-772-8700 • ++1 (916-786-3800) • techsupp@pasco.com • www.pasco.com

012-07691D-de

KARTE 1B

Leitfähigkeitsexperiment

Folgendermaßen wird eine Stichprobe der Leitfähigkeit von Leitungswasser vorgenommen:

- 1. Klicken Sie auf EZscreen im PASPORTAL-Fenster.
- 2. Halten Sie die Sonde in Leitungswasser.
- 3. Klicken Sie auf die Schaltfläche Start, um Daten aufzunehmen.

EZscreen Aufgabe:	Verfahren:
Aufnehmen der Daten:	Klicken Sie auf die Schaltfläche Start am oberen Rand des Bildschirms. Sie können Daten bis zu zwei Stunden lang aufnehmen.
Skalieren zum Anpassen der Daten:	Doppelklicken Sie auf den Graphen, um die Daten zu skalieren.
Export der Daten in DataStudio:	Klicken Sie auf die Schaltfläche Beenden und weiter mit DataStudio.

Einstellung und Kalibrierung

DataStudio Kalibrierung

Erforderliche Komponenten: PASPORT-Leitfähigkeitssensor (PS-2116), Normallösung (mit ähnlicher Leitfähigkeit wie die Testprobe), DataStudio-Software

Führen Sie eine Einzelpunkt-Kalibrierung mit Hilfe der DataStudio-Software durch:

- Im PASPORTAL- Fenster Einstellungen klicken Sie auf die Schaltfläche Kalibrieren neben
 µS/cm.
- 2. Geben Sie den bekannten Leitfähigkeitswert der Standardlösung in das Textfeld ein.
- 3. Halten Sie den Leitfähigkeitssensor in die Standardlösung.
- 4. Klicken Sie auf die Schaltfläche Einstellen.

Kalibrierung des PASPORTAL-Xplorers

Erforderliche Komponenten: PASPORT-Leitfähigkeitssensor (PS-2116), Normallösung (mit ähnlicher Leitfähigkeit wie die Testprobe), PASPORTAL-Xplorer

- 1. Schalten Sie den Xplorer ein und stecken Sie einen Sensor ein.
- 2. Drücken Sie auf Anzeige, bis der Bildschirm Kalibrieren erscheint.
- 3. Drücken Sie auf die Häkchen-Taste.
- 4. Drücken Sie auf die Tabulator-Taste, um die Stellen zu durchlaufen.
- Verringern oder erhöhen Sie die Ziffer mit Hilfe der oder + Knöpfe, bis die Anzeige dem Wert der ausgewählten Standardlösung entspricht.
- 6. Halten Sie den Leitfähigkeitssensor in die Standardlösung.
- 7. Drücken Sie auf die Häkchen-Taste.

Leitfähigkeitsinformationen

5. Klicken Sie auf 0K.

Der Leitfähigkeitssensor ist äußerst empfindlich. Ein Messwert von 25 μ S/cm für eine Testprobe mit reinem Wasser ist problemlos innerhalb des Toleranzbereichs. In einer typischen Unterrichtsumgebung ist reines Wasser schwer zu finden. Mit der Zeit kann selbst der Behälter die Losungen verunreinigen. Es ist wichtig, die Größenordnung und den Bereich dieser Messung zu verstehen, um sinnvolle Urteile aufgrund der Leitfähigkeits-Messwerte zu treffen.

L	eitfähigkeitswerte	für	übliche	wässerige	Lösungen	hei 25	°C
-	. GILLATING KEILS WEILE	IUI		wassenge	LUSUNYEN	00120	U

Lösung	Wert		
Ultrareines Wasser	0,05-0,75 µS/cm		
Trinkwasser	50-1500 µS/cm		
Meereswasser	53.000 μ S/cm		

Beziehung zwischen Leitfähigkeit und Gesamtgehalt gelöster Feststoffe (GGF)

Als Faustregel für die Schätzung des GGF in Teilen je Million wird die Leitfähigkeitsmessung durch 2 geteilt:

 $GGF(ppm) = \underline{Leitfähigkeit ((\mu S)/(cm))}{2}$

Weitere Informationen über den Einfluss der Temperatur auf die Leitfähigkeit: www.pasco.com.

012-07691D-de

KARTE 2B

DataStudio-Experiment

Folgendermaßen wird eine Stichprobe der Leitfähigkeit von Leitungswasser und "Schmutzwasser" vorgenommen:

- 1. Wählen Sie DataStudio aus dem PASPORTAL-Fenster aus.
- 2. Halten Sie die Sonde in Leitungswasser.
- Klicken Sie auf die Schaltfläche Start, um Daten f
 ür Messreihe 1 der Leitf
 ähigkeit aufzunehmen.
- 4. Klicken Sie auf die Schaltfläche Stopp, um Messreihe 1 zu beenden.
- 5. Spülen Sie die Sonde mit destilliertem oder entionisiertem Wasser.
- 6. Halten Sie die Sonde in "Schmutzwasser".
- 7. Klicken Sie auf die Schaltfläche Start, um Daten für Messreihe 2 der Leitfähigkeit aufzunehmen.
- 8. Klicken Sie auf die Schaltfläche Stopp, um Messreihe 2 zu beenden.

Leitfähigkeitsdaten in Leitungswasser (Messreihe 1) und Schmutzwasser (Messreihe 2)

